Learning action models for multi-agent planning

نویسندگان

  • Hankui Zhuo
  • Hector Muñoz-Avila
  • Qiang Yang
چکیده

In multi-agent planning environments, action models for each agent must be given as input. However, creating such action models by hand is difficult and time-consuming, because it requires formally representing the complex relationships among different objects in the environment. The problem is compounded in multi-agent environments where agents can take more types of actions. In this paper, we present an algorithm to learn action models for multi-agent planning systems from a set of input plan traces. Our learning algorithm Lammas automatically generates three kinds of constraints: (1) constraints on the interactions between agents, (2) constraints on the correctness of the action models for each individual agent, and (3) constraints on actions themselves. Lammas attempts to satisfy these constraints simultaneously using a weighted maximum satisfiability model known as MAX-SAT, and converts the solution into action models. We believe this to be one of the first learning algorithms to learn action models in the context of multi-agent planning environments. We empirically demonstrate that Lammas performs effectively and efficiently in several planning domains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Time Models for Reinforcement Learning

Reinforcement learning can be used not only to predict rewards, but also to predict states, i.e. to learn a model of the world's dynamics. Models can be deened at diierent levels of temporal abstraction. Multi-time models are models that focus on predicting what will happen, rather than when a certain event will take place. Based on multi-time models, we can deene abstract actions, which enable...

متن کامل

Learning of Agent Capability Models with Applications in Multi-agent Planning

One important challenge for a set of agents to achieve more efficient collaboration is for these agents to maintain proper models of each other. An important aspect of these models of other agents is that they are often partial and incomplete. Thus far, there are two common representations of agent models: MDP based and action based, which are both based on action modeling. In many applications...

متن کامل

Capability Models and Their Applications in Planning

One important challenge for a set of agents to achieve more efficient collaboration is for these agents to maintain proper models of each other. An important aspect of these models of other agents is that they are often not provided, and hence must be learned from plan execution traces. As a result, these models of other agents are inherently partial and incomplete. Most existing agent models a...

متن کامل

Multi-time Models for Temporally Abstract Planning

Planning and learning at multiple levels of temporal abstraction is a key problem for artificial intelligence. In this paper we summarize an approach to this problem based on the mathematical framework of Markov decision processes and reinforcement learning. Current model-based reinforcement learning is based on one-step models that cannot represent common-sense higher-level actions, such as go...

متن کامل

Motivated Learning from Interesting Events: Adaptive, Multitask Learning Agents for Complex Environments

This paper presents a model of motivation in learning agents to achieve adaptive, multi-task learning in complex, dynamic environments. Previously, computational models of motivation have been considered as speed-up or attention focus mechanisms for planning and reinforcement learning systems, however these different models do not provide a unified approach to the development or evaluation of c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011